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Detachable Summary 

Literature Survey of Blast and Fire Effects of 

Nuclear Weapons on Urban Areas 

The American literature of the past 30 years on fire and blast effects of 
nuclear weapons on urban areas has been surveyed. The relevant work in the 
categories of thermal radiation and blast-wave propagation, ignition, 
structural response, and firespread is sketched and areas where information is 

apparently lacking are noted. 

One purpose of this report is to provide entry into the literature for 

researchers. Over 850 references are given, arranged alphabetically by first 
author. Accession numbers are given wherever possible to facilitate ordering 

from DTIC or NTIS. 

The main prupose of this report is to provide the basis for suggesting 

Sixty-two research priorities in fire and blast effects for civil defense. 
component problems are identified and assigned to one of three rankings 

according to their perceived relative state of knowledge. Without implying 
any relative importance by their order, we list below those areas where 

knowledge appears to be the most deficient. 

Ignition criteria for newer materials and for all materials under 

typical use conditions. 

Effects of complex geometry or mixed fuel on ignition criteria. 
Enclosure effects on flashover. 

Conditions under which blast.prornotes incipient fires. 
Effects of blast damage on the burn characteristics of structures. 
Debris production and distribution from individual building elements 

and buildings, especially residential. 
Fire spread rates between relatively intact structures for many 

simultaneous ignitions and through debris fields for various wind and 
weather conditions. 

Conditions for the existence of mass fires and conditions within and 

near them. 

Methodology for thermal radiation propagation through incompletely 

specified atmospheres. 



Methodology for efficient representation of an urban area in a 

realistic fashion. 
Methodology for calculating shadowing and shielding effects of a 

specified urban area. 
Methodology for calculating dynamic response and collapse of entire 

buildings. 
Multiple-burst effects on thermal radiation and blast-wave loading of 

targets; effects of blast on established fires; and structural 
response of structures previously damaged by blast or fire. 

Since the assignment of priorities depends on long-term goals and budget 
information, priorities are not suggested in this report. 



LITERATURE SURVEY OF BLAST AND FIRE EFFECTS 
OF NUCLEAR WEAPONS ON URBAN AREAS 

ABSTRACT 

The American literature of the past 30 years on fire and blast effects of 

nuclear weapons on urban areas has been surveyed. 
briefly sketched and areas where information is apparently lacking are noted. 

This report is intended to provide the basis for suggesting research 

The relevant work is 

priorities in the fire and blast effects area for the Federal Emergency 

Management Agency. It is also intended to provide entry into the literature 
for researchers. Over 850 references are given. 

INTRODUCTION 

The purpose of this literature survey was to determine the state of 

knowledge of blast and fire effects of nuclear weapons on urban areas. 
information should aid the planning of research in improving predictive 

capabilities and the development of mitigation and hardening measures. 

This 

The awesome effects of nuclear weapons have been of paramount concern 

during the nearly 40 years since the destruction of Hiroshima and Nagasaki. 
Nuclear radiation effects have been uppermost in the public consciousness. 

Blast effects have figured prominently in the military thinking about nuclear 

weapons, probably because blast effects are the only direct effect of 

conventional explosives. 
unique features of nuclear weapons and have perhaps not received the 

appropriate amount of attention.. This relative neglect is somewhat 
paradoxical in light of the enormous impact of fire during World War iI. 

One reason is that the difficulty of predicting fire effects, compared to 

blast effects, has caused them to be virtually discounted in strategic 

targeting. Targeting has emphasized military resources rather than population 
(which is more threatened by large-scale fires); consequently, fires caused by 

nuclear weapons have largely been the concern of civil defense planners. 

The thermal radiation and consequent fire threat are 
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Research into blast and fire effects of interest to civil defense has 
been conducted for over 30 years. 

literature is large. 
available, we cannot claim to have done an exhaustive survey. Work directly 

relevant to our study has tended to be published only in contract reports, 
rather than in the technical literature; such reports seldom provide an 

overview of the problem or references to work by those outside of the civil 
defense community. 

The directly and peripherally relevant 

Because of the limited amount of time and resources 

The main data base used to identify relevant documents has been that of 

the Defense Technical Information Center (DTIC). 

keywords and authors. 

the technical journals, the Engineering Index was used also. 
documents were identified from the references of other reports. 

Searches were done using 

Since there is a significant amount of fire research in 
Additional 

Previous literature surveys of the fire field have been conducted. 
1960, researchers at the Armour Research Foundation in Chicago (now the 
Illinois Institute of Technology Research Institute) surveyed the existing 
literature [Sll]. In 1966 Renner, Martin, and Jones at the Naval Radiological 

Defense Laboratory in San Francisco did a survey of the literature in the 
course of identifying the important parameters in urban fire vulnerability 

[R09]. 
overview of the fire aspect. In 1975 Hahl [H03] provided a bibliography of 

research funded by the Defense Civil Preparedness Agency from 1962-1975. A 

much broader fire bibliography has recently been prepared by Groce and McKay 

of SA1 [G26]. 

In 

Martin's 1974 review [M31] on fire in nuclear warfare is a more recent 

This report consists of summaries of our findings in four main areas: 

(1) attack scenario, thermal radiation and blast wave propagation; (2 )  

ignition; ( 3 )  structural response and debris formation; and ( 4 )  fire spread 

and mass fire. 

conclusions are presented at the end. 

relative state of knowledge, while the second appendix is a bibliography of 
relevant documents. 

Conclusions are given for each section, and our overall 

The first appendix summarizes the 

We emphasize that this report presents what we perceive to be the state 

of knowledge in the blast and fire areas, based on the literature we were able 
to obtain. 

addressed in this report. 
provide entry points to the literature for researchers. 

The more difficult question of research priorities is not 
We hope that this document can stand alone and 
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ATTACK SCENARIO, THERMAL RADIATION AND BLAST-WAVE PROPAGATION 

Studies of blast loading, fire spread and casualties resulting from the 
use of nuclear weapons are predicated upon a presumed attack scenario, i.e., 

number, yields, burst points, and timing of the weapons. There can never be 
certainty concerning attack scenarios, Nevertheless, useful information has 

been obtained from past research. 
From Soviet literature available in this country, it is possible to 

identify the likely U.S. targets. It is also possible to make plausible 
guesses as to weapon yield and height of burst for any particular target or 

target complex. There is also sufficient information on weapon output 
characteristics for use in calculating fire and blast effects. 

Standard works on general weapon characteristics still currently used are 

those of Glasstone [G12] and Brode [B73], and the DNA Weapons Effects Manual 

[D15]. 
Some general statements can be made about Soviet attack scenarios, based 

on the available information concerning their arsenal and its possible use. 
In their 1979 publication, Douglass and Hoeber [D19] state that the most 

likely Soviet attack scenario is a global nuclear war employing all the 
resources at their command, beginning with a first strike against immediate 
war-fighting assets of the U . S .  

indicates that an attack on the U . S .  would use fairly large yields (0.5-1 MT), 
usually more than one per target; targets would be weapons, ships, 
command/control/communication/intelligence, political authority, etc., but not 
cities or population as such. 

Both the physical and literary evidence 

We conjecture that the most probable attack scenario would involve 

multiple warheads from missile-delivered re-entry vehicles. 

of such a scenario on blast loading and fires are considerable. 
have been based on single-burst scenarios as a first step in the analysis of 
the very common post-attack phenomena. We would expect, for example, that the 

debris formation and fire characteristics under a multiple-burst attack would 
be radically different from a single-burst situation in terms of the thermal 

fluence, the ignition probabilities of the debris and structures, and the 
effect of firebrands. 

The implications 

Most studies 

Despite these uncertainties, much can be learned from consideration of a 

single-burst attack. We shall consider here only the blast phenomena for a 
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single-burst attack scenario. 
a nuclear attack is discussed in Refs. G09, B73, and D15. A useful text on 

blast characteristics is by Zel'dovich and Raizer [ZOS]. 

Much of the blast-wave phenomena resulting from 

Blast-Wave Propagation 

The presence of uneven terrain, barriers or structures in the path of a 

blast wave causes changes in its characteristics--notably in terms of 
overpressure--from those corresponding to propagation over flat terrain. 

Rather extensive theoretical and experimental analyses have been performed on 
terrain effects including valley channeling, but no comprehensive theory seems 

to be available on barrier or structure shielding effects. While blast-wave 

propagation through an ideal atmosphere is well understood, there is not much 

information regarding the effects of humidity or dust. 
In general, shock-wave interaction with inclined terrain is such that the 

overpressure increases upon propagation along rising slopes and decreases over 
falling slopes. 

Refs. T34, W61, and K16. Correlations of these and other results have been 
developed as a predictive tool [A32, K25], and are called the "small-charge" 
method. In addition, a purely theoretical treatment of the shock-interaction 
processes has been made by Whitham [W35]. 

to be commonly used in a priori estimates of overpressures for the case of 
blast propagation along inclined terrain and in valleys [W67]. 

This has been observed experimentally for small charges (see 

These two prediction methods appear 

In Figure 1, three schematic diagrams of the changes in shock-wave 
patterns caused by terrain are presented. 

by a rising slope predicted by the Whitham theory is given in Figure 2. 

Typical increases of a factor of two or three are indicated; a corresponding 

reduction in overpressure for falling slopes is also predicted. Sample 

results from recent experiments to ascertain the validity of the analytical 
methods are shown in Figure 3 .  The terrain chosen consists of both rising and 

falling slopes in the propagation direction. Theoretical predictions for the 

same terrain are also shown in Figure 3 .  

experiment indicates reasonable agreement along rising slopes but less 

satisfactory agreement along falling slopes. 
somewhat better agreement for the small-charge method than for the.Whitham 

theory. 

The increase in overpressure caused 

Comparison of the theory with, 

The comparison also demonstrates 
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Figure 1. 
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Changes i n  shock-wave pat terns  caused by changes i n  t e r r a i n  (from 
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Although the above examples deal mainly with large overpressures (greater 

than 10 psi) they indicate the effects of slopes on blast-wave overpressures. 
It appears that blast propagation along inclined slopes may result in changes 
in overpressure by a factor of less than 3 (certainly less than 10 or 100). 

We may thus bracket the effect of shielding by terrain with reasonable 
confidence. 

While numerous test results are available on the presure-time history for 
blast waves in the presence of barriers or structures, there does not appear 
to be any meaningful correlation of test results. 

theoretical modeling or prediction has produced directly useful information. 

At this juncture, then, only some qualitative statements can be made, based 
mainly on data reported by Coulter [C32]. 
was less when the model was shielded than when unshielded; the rear-wall 

loading was increased by reflections from the back row of shields; the roof of 

the model did not experience very different loading from one configuration to 

the next; and the existence of openings (such as windows) on the model caused 
only minor changes in the exterior load. 

Nor is it clear that any 

For example, the front-wall loading 

No efficient methodology apparently exists for describing blast-wave 
propagation through specified urban areas. 

n 

Thermal Radiation Propagation Through the Atmosphere 

Propagation of thermal radiation through the atmosphere was studied 
extensively in the 1960s. 

transmissivity of the atmosphere for fireball thermal radiation by Gibbons 

[G08]. 

of thermal intensity may decrease to as little as one-tenth of that for a 

clear atmosphere. 

well understood given the atmospheric conditions at the time of attack at a 
given locale. 

predicted beforehand. 
multiple-burst situation, and a parametric or a probabilistic approach way be 

appropriate for estimating the thermal-radiation loading on structures. 

Of main interest was the calculation of the 

Gibbons also calculated that through heavy clouds the transmissivity 

We believe that calculation of transmissivity is reasonably 

Of course, this is precisely the information that cannot be 

This uncertainty is further compounded for a 

Shadowing of thermal radiation by terrain, vegetation, or structures is 
another problem that can be solved given sufficient information regarding 
burst point, target, and intervening objects. The difficulty is in 

a 



calculating a reasonable incident flux history for a large number of targets 
without being overwhelmed by a huge volume of data. dr3 
Conc lus ions 

Information is lacking in the following areas: 

0 Multiple-burst effects on thermal radiation transmission and 
blast-wave propagation. 
Effects of humidity or dust on blast-wave propagation. e 

e Shadowing and shielding effects of structures on thermal radiation 
and blast loading in urban areas. 

Methodology for thermal radiation propagation through incompletely 
specified atmospheres. 

0 
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IGNITION 

Ignition caused by thermal radiation is one of the more heavily 

researched parts of the blast and f,-* problem. 
materials exposed to thermal radiation were studied mainly from the mid-1950s 
to the mid-1960s. 
tests were generally qualitative rather than quantitative. Quantitative 
laboratory data have been obtained using carbon arc and other sources to 

produce either a square-wave pulse or one intended to represent the essential 

features of the thermal radiation pulse from a nuclear weapon. 

orientation has nearly always been vertical and normal to the flux. 

Ignition criteria for 

The ignition data obtained from the atmospheric nuclear 

The sample 

The most 
frequently studied materials have been cellulosic, especially samples from a 

specially prepared batch of alpha cellulose papers. 
generally been at least nominally clean and black. 

In a review of urban fire vulnerability [R09], the parameters affecting 

The surfaces have 

free-field ignition of materials were given in approximate order of importance 
as: fuel thickness or weight per unit area, optical absorptance, weapon 

yield, burst altitude, relative humidity or recent precipitation, local air 
currents, chemical composition, extraneous contents (e.g., water and 

minerals), fuel geometry (e.g., plane or complex) for long pulses only, 
natural vs manufactured fuels, spectral distribution of thermal radiation, 

and, for some multiple-burst situations, the time between bursts. 
The most extensive compilation of radiant ignition criteria is apparently 

that given by Glasstone [G12]. 
three different low-altitude yields. 
fabrics, tent and other fabrics, household and outdoor tinder materials, and a 

few construction and other materials. Most of the data were estimated to have 

a precision of +50% - for field conditions, and - +25% under laboratory conditions. 

The critical radiant fluence is given for 
Data are given for clothing and drapery 

The earlier laboratory data were for square-wave pulses [B105]. The 

thermal pulse shape of low-altitude bursts was simulated and compared with the 
earlier laboratory results [M07, MlO]. 

energy to ignite alpha cellulose for short exposures and more energy than a 
square-wave pulse for long exposures. Therefore, two parameters (typically 

the peak irradiance and time to last maximum) are required to characterize the 
thermal pulse. 

The weapon pulse shape required less 

10 
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High-altitude, large-yield weapons produce very intense but very 

@ short-length pulses which are difficult to simulate in the laboratory. The 

available data, however, support the scaling relationships found for longer 

exposures [MlO]. 
Other difficulties with laboratory measurements have been the small area 

of uniform exposure (e.g., 3 /8 -3 /4"  diam), and the almost universal use of 
vertical samples. 

regime where convection losses are the decisive factor for ignition [S591 
Buoyancy effects resulted in higher flux and exposure requirements for 
vertical versus horizontal samples of PMMA Lucite and red oak [K17]. 

It has been suggested that sample size is important in the 

Another factor in determining the amount of energy absorbed is the 
optical absorptance. 
colors has been observed in nuclear explosions and laboratory tests. 

the surface properties change during exposure, however, very little 

quantitative data are available. 
during a long exposure, a cellulosic material will soon char and therefore 

have an absorptance near unity. 

distribution of thermal radiation is believed to show up only in the spectral 

dependence of the target absorptance, if any. 
absorption and scattering, the incident thermal flux is similar in spectral 
composition to sunlight. 

The dramatic effect resulting from different target 
Since 

The usual assumption is that, at least 

Although no data exist, the spectral 

As a result of atmospheric 

The ignition process in cellulosic materials has been reviewed in several 

places by Martin [R09, M15] and more recently by Kanury [KO31 and by Steward 
[S831.  The observed macroscopic parameters can generally be explained using 
relatively simple heat conduction models, but our understanding of the 

detailed chemistry and fluid mechanics still leaves many questions. 

Martin summarized the behavior of cellulosic materials as indicated in 

Figure 4.  
fuels. 
on non-cellulosic fuels in a form useful for predicting primary ignitions. 

No such detailed correlation has been found for non-cellulosic 
The increased use of plastics suggests a need for correlation of data 

Data from atmospheric nuclear tests are limited, but they do represent 

field conditions, although not a wide range of conditions and yields of 

interest. 

effects of humidity and mineral content on the ignition of alpha cellulose 

[M08, B79]. 

problem. 

A small amount of laboratory work has been done to investigate the 

The effects of wind have barely been considered in the ignition 

The general belief is that wind is not important for short, intense 

11 
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pulses, and that it becomes a factor only for marginal cases where losses are 
@ the decisive factor [ R 0 9 ] .  [The marginal region determines, however, the 

reach of primary ignitions and represents a large area because of the large 

distance from ground zero (GZ). ]  Very recent precipitation will reduce the 

fire hazard of exterior fuels. 

Ignition of isolated fuels does not represent the actual situation, 

however. The location and condition of fuels in an urban environment can have 
a great impact on the fire threat. The ignition of a mixture of thick and 

thin fuels is more realistic but has not received sufficient attention. 

Alvares and Wiltshire [A201 found 50% reduction in critical irradiance for 
cotton cloth when backed by cotton batting, and appreciable reduction in the 

time to ignition for cotton cloth in combination with newspaper for high 

irradiances but not for low irradiances. Waterman and Vodvarka found similar 
results [WO3]. 

susceptible to ignition by radiation than the isolated components. The 
reasons seem to include insulating effects and the piloting of thicker fuels 

by thinner ones. 

It can be inferred that composite specimens may well be more 

A s  the problem of large-scale urban fires was studied during the 1950s 

and 1960s, the view soon became generally accepted that the primary ignition 

hazard was due to interior fuels. 

persistently with a short pulse of radiation, and even if ignited the 
probability of fire spread to a structure was estimated to be low, based on 

normal fire experience. Brown showed [B85] that there was virtually no chance 

of persistent ignition of thick, sound wood beyond the region of severe blast 
damage produced by a weapon'of less than 100 MT. Also, the ignitability of 
interior fuels is much less affected by adverse weather. 
interior ignition by thermal radiation has received the most attention. The 
scenario is the ignition of thin fuels, fire spread to thicker fuels, and 
total room involvement, leading eventually to total building involvement in 

some cases. 

Exterior fuels tend to be hard to ignite 

Consequently, 

This scenario is basically derived from normal, peacetime fire 
experience. It is known, however, that geometrical complexity can be a 
factor. Corners behave differently than flat walls, because of multiple 

reflections. 
and Martin regarding occurrence of a phenomenon caused by the very high 
heating rates of enclosures by the thermal radiation pulse. 

A more important question has been raised recently by Waterman 

This phenomenon 
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is an abrupt flashover, independent of the contents of the enclosure. This 
was observed in one atmospheric test. (See also [T30].) If it represents the 
rule rather than the exception, it would completely change the fire spread 

scenario. 

Calculation of shadowing effects is simply a geometrical problem, given 

the height of burst, yield, and the location and orientations of buildings, 

hills, and trees, window sizes, and the location of fuels within the rooms 

[B37]. The problem, of course, is how to represent an urban area in a 

probabilistic yet meaningful way. Towards this end, a few cities were 

surveyed in the 1950s and 1960s [B92, S131. Some work has also been done to 
measure the effect of windows and screens on transmission of radiant energy. 

Consideration of shadowing and attenuation led Bracciaventi [B40] to conclude 

that previous estimates of initial fire starts caused by radiation had been 
overestimated by a factor of 2. 

Secondary fires are those caused by blast effects rather than by thermal 
radiation, i.e., the blast brings a fuel and an ignition source into contact. 
Secondary fire danger has been estimated by analysis of sketchy data from 

Hiroshima and Nagasaki, as well as other war and natural disasters [M43, W701. 
It is believed that in some circumstances (e.g., in the low-overpressure 

region), secondary ignitions can exceed primary ones. 
the lack of any secondary fire analysis for residential structures. 

A notable gap has been 

There was a very small amount of testing in atmospheric shots of 
secondary fire ignition, but the results were inconclusive. The general 

belief is that automatic shut-off of gas and electrical power would greatly 
reduce the secondary fire hazard, but at the same time complicate rescue and 

survival operations in the immediate post-attack period. 

There does not appear to be any practical way to increase the amount of 

data for estimating the secondary fire hazard. 

fires caused by earthquakes are quite similar, but Wilton et al. [W70] contend 

otherwise. 
directly relevant data. 

response with survey data on location, storage, and use of fuels appears to be 

needed. 

It has been suggested that 

The expense of large-scale HE tests precludes the accumulation of 
Probabilistic analysis combining expected structural 

Ignition by convection is generally a mode of fire spread rather than 
start. It is sufficient to note here that little work has been done to 
establish convective ignition criteria similar to those for radiative 

14 
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ignition. Weatherford and co-workers [Wl8] have studied the phenomenology of 

convective ignition. A s  for the more realistic situation in fire spread of 

mixed radiative and convective ignition, recourse probably should be made to 
the flammability data for various materials. 

Several computer codes were developed during the late 1960s to predict 
primary fire ignitions in urban areas. 

generally based on incident fluence into rooms and the nature of the contents 
or building use. The urban areas were described with various amounts of 

detail. 
bad points were compared by R. K. Miller et al. [M63]. 

Calculated ignition probabilities were 

The main features of four codes were discussed, and their good and 

Conclusions: 

Information is lacking in the following areas: 
0 Ignition criteria for newer materials, such as plastics. 

Effects of field conditions (e.g., dirt, weathering, condensed water) 
on radiative ignition criteria. 

0 Convective ignition criteria for various materials. 

Effects of sample orientation and wind on radiative ignition. 

Effects of geometrically complex arrangements (e.g., corners), mixed 

thick and thin Suels, and composite materials on ignition criteria. 

0 Enclosure effects (abrupt flashover). 

Methodology for representing specific urban areas in an efficient yet 

real is t ic way. 
Probability of secondary fire ignition for residential structures. 

15 



STRUCTURAL RESPONSE AND DEBRIS FORMATION 

In addressing the overall blast and fire effects of nuclear weapons on 

urban areas it is necessary to understand and predict: 
0 

0 

The dynamic response or collapse of structures. 

The debris production, composition, and distribution from damaged 

structures. 

Here we briefly review the existing methodologies €or estimating the dynamic 
response and debris production. 

Background 

As a result of a nuclear explosion, a structure may be damaged primarily 

by three means: fire, blast-induced ground motion, and air blast. 
In the first case, the structure may catch fire as a result of the 

thermal radiation pulse. However, this fire does not act long enough prior to 
the blast wave arrival to alter the structural response. The surviving fires, 

i.e., after passage of the blast wave, may well cause severe damage to the 

ignited and neighboring structures; thus the blast response of fire-damaged 
buildings may be of interest for multiple-burst attack scenarios. 
literature search did not turn up any information on the dynamic response of 

buildings previously damaged by fire or blast. 

The 

The detonation of a nuclear weapon, particularly a surface-burst weapon, 

The destructiveness of these ground motions, can cause large ground motions. 
however, are very localized in nature (as compared to the range of the air 

blast) and therefore only need to be accounted for in structures relatively 

close to GZ. 

Figure 5 shows vertical acceleration as a function of ground range for a 
surface explosion. 
motion with distance. 

distance of 150 m (500 ft) is approximately 10 g with a rapid decline to 1 g 

at about 350 m (1150 ft). The ground motions may need to be accounted for in 

structures located close to GZ. Keyworker shelters, for example, are often 
proposed for underground placement to escape the devastating effects of air 

blast, and the ground motion may be a controlling factor for design or 

analysis. 

This graph demonstrates the rapid attenuation of ground 

For a 1 kt explosion, the vertical acceleration at a 

Although the ground movements have been measured in various test 
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situations, ground motions have not been accounted for in any of the 
structural analysis methods we found in our literature review; Ref. S26 gives 

a summary of many tests and some potential problems have been identified by 

Mason and Walter [M411, especially for saturated soils. 

For the majority of structures, air blast loading would be the primary 
cause of damage and debris production. The blast loading on a structure 

consists of a "diffraction loading," which is determined mainly by the peak 

overpressure in the blast wave, and a "drag loading" in which the dynamic 

pressure is the significant property.* 

simultaneously to both types of loading, although certain structures may be 

more sensitive to one type. (A truss bridge, for example, would be subjected 

primarily to a drag loading.) The actual pressure-time history at each point 

on the outside surface of a structure is very difficult to predict because of 
the complexities of the interaction of the blast wave and the structure. 

Simplified methods of predicting an average external loading on a structure 
give a reasonably accurate estimation of external pressure for use in dynamic 

analysis [G12, B50, A341. 

All structures are subjected 

Civil defense planners are interested in the modeling of the dynamic 

response of structures from initial loading through the ranges of elastic and 

inelastic response and up to failure or collapse for a number of reasons: 

0 To determine occupant survivability in existing, unhardened 

structures; 
0 To determine what, if any, utility the structures would have after an 

attack ; 
To evaluate the feasibility of various hardening schemes; 0 

0 To determine the extent, composition, and distribution of debris from 

the failed or collapsed structure. 

important for planning rescue and post-attack recovery operations and 

to determine the fuel bed for fires.) 

(The evaluation of debris is 

The ideal tool for a civil defense planner would be a computer code 
which, given an attack scenario, could accurately determine the loading on a 

given structure, the dynamic response with accounting for failure of certain 

*Glasstone [G12] gives a good account of the basic phenomena of blast-wave 
propagation and loading of structures. 
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elements, the debris content and distribution resulting from the failure of 

structural components, and the survivability of personnel in the structure. 

Such a code would prove valuable in determining the best possible shelters and 
also in making overall damage estimates. 

6.$ 

Unfortunately a model does not exist, on any practical level, for 

performing all these analyses. There have been significant advances, however, 

in understanding the basic behavior of structures up to the point of collapse 

and estimating the dynamic response of structures and debris production. 
important developments are discussed below. 

Some 

Predicting Dynamic Response of Structures 

The numerous computer programs developed for the elastic analysis of 

structural systems (both matrix analysis and finite element analysis) are of 
little use in the dynamic analysis of structural systems up to failure or 
collapse. The large deflections and markedly nonlinear behavior of structural 
systems near failure or collapse precludes any simple linear characterization 

of the structural system. With the exception of a method employed by Lin and 
Associates [A031 in the early 1960s, the problem of predicting the dynamic 
response of structural systems has focused on studying, through 
experimentation and analytical modeling, the dynamic response of individual 

elements. 

been used to model the dynamic response of entire structures. Attempts to 

model the dynamic response of entire structural systems accurately has 
probably followed this path because of: 

The information gained from the individual element studies has then 

0 The feasibility of testing and the availability of test data for 
blast response of individual structural elements; and 
The overwhelming comptexities of the dynamic response of entire 0 

structural systems, .complicated -by the lack of quantitative’ data . 

(pressure measurements, deflections, etc.) . o f  entire structures 
subjected to blast. 

Individual Elements 

The most widely accepted method for the dynamic analysis of structural 

elements appears to be the single-degree-of-freedom (SDOF) method whereby an 

19 



existing structural element, a wall or floor for example, is idealized as a 
SDOF system. 
dependent on translation factors based on conservation of energy. 

necessary to obtain a resistance function which is characteristic of the 
material of the element (reinforced concrete, masonry, etc.) and the type of 

element (beam, simply-supported plate, fixed plate, etc.). Once the 
transformation to a SDOF system is made, the equation of motion for the SDOF 

system can be integrated numerically to determine the deflection of the wall 
as a function of time. 

The transformation of the actual element to a SDOF system is 

It is also 

- 

This process is shown schematically in Figure 6 .  The accuracy of the 

SDOF method is obviously dependent on how accurately the resistance function 
represents the actual resistance supplied by the member. The resistance 

functions can be quite complicated, representing many different resistance 
mechanisms. 

confirmation by testing is essential. 
developed f o r  a reinforced concrete slab. A number of shock tube tests have 

provided essential test data on the dynamic response and collapse of 

individual elements [GOl, W69, L511. 

When resistance functions are developed by analytical methods, 
Figure 7 shows a resistance function 

The numerical integration of the SDOF equation of motion yields the 
displacement of the structural element as a function of time and thus predicts 
the dynamic response of the element. In order to estimate incipient collapse 

overpressure it is also necessary to establish a failure criteria for the 
individual elements. This is often based on a maximum center deflection. 

Wiehle et al. [W39, W44] have successfully developed and applied the SDOF 
methodology to a number of structural wall types. Comparison of the analytical 

results with existing test data shows good correlation. Beck et al., [B121 
have applied the SDOF method to structural elements other than walls, i.e., 

beams of various support configurations, thin and thick slabs, and buried 
structures. 

the beam and slab models was quite good. Beck estimates that the SDOF model 
is capable of estimating the incipient collapse overpressure to within - +15%. 

The accuracy of the analytical predictions for the response of 
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Structural Systems 

While the dynamic response and collapse of many individual structural 

elements is understood and accurately modeled, a computer program does not 

exist that is capable of predicting the dynamic response of an entire 
multi-story building from initial yielding to catastrophic collapse. 

this problem is much more difficult because of the complexities of 

interactions between the blast wave and the structure and interactions between 

the individual structural elements. 
requires the prediction of airflow and pressure inside the structure, a very 
complicated process that has only been attacked by approximate methods even 

for the simplest geometry [C26, C29, M83]. Some of the attempts to analyze 
entire structural systems are reviewed below. 

Indeed, 

An accurate dynamic analysis also 

The studies performed at SRI between 1968 and 1980,  utilizing the SDOF 

method [W39, W441, laid the groundwork for development of a computer code for 
the blast response of buildings. 
buildings) code developed by Rempel [R04, R05] is capable of simultaneously 

analyzing the response of all exterior walls on one story level of a 
building. 

Given a description of the air blast, the floor plan and structural 

properties, it performs an incremental analysis in time, calculating at each 
time step the net loading on each wall and the resulting response. 

The BRACOB (blast response and collapse of  

The program treats each individual wall element as a SDOF system. 

The program alters the floor plan of the structure according to the 

predicted wall collapse and continues the analysis until either the blast has 
passed or all walls have collapsed. The BRACOB program utilizes a room 

filling method given by Rempel [ R O f t ]  and an exterior air blast loading given 
by Glasstone [G12]. 

a structure and, in its present form, is for the analysis of the walls only, 
not  the frame of the structure. 

This code is capable of analyzing only one floor level of 

Results predicted by the BRACOB code have been compared to experimental 
data gathered in both the Dice Throw and Mill Race* events. In the Dice Throw 
event [W46] the code successfully predicted damage levels for single story 

*Rempel, SRI report in preparation. 
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structures at various distances from GZ. 

the outward collapse of some of the structural walls. 
The code also successfully predicted 

In the mid 1960s, T. Y. Lin and Associates developed a computer program 

to analyze the dynamic response of high-rise buildings to nuclear blast 

[A03]. This frame analysis program takes into account the plastic resistance 

of the structural members. 
requires many assumptions: e.g., it assumes that all walls have failed and 

that the loading on the exposed frame is caused solely by drag. The program 
does not tell if the structure has collapsed. It calculates how much 

ductility the structural members have used (i.e., p = e / e  

'e e = plastic rotation, 
collapse is assumed to occur when a given ductility level is reached. The 
assumptions employed in the program appear to be somewhat crude for the blast 

analysis of a structure. However, this level of simplicity was probably 

necessary in the early 1960s when data on collapse of structural elements was 
sparse. A s  far as we know, the results from this code have never been compared 
to experimental data, nor are we aware of any existing data appropriate f o r  such 

a comparison. 

The analysis of a structure using this program 

where p = ductility, 
P e' 

= elastic rotation at yield). The structural 
P 

Another computer program was developed by Longinow et al. [L46, L501. The 

objective of this code is not to perform a structural analysis per se but to 
develop a deterministic, computerized model for predicting the survivability of 

people located in conventional buildings subjected to the direct effects of 
nuclear weapons. This code is apparently unique in trying to calculate what is 

of ultimate importance: the number of survivors of nuclear attack. A s  part of 

calculating the people survivability, the components of a structure (walls and 

floors), are analyzed using the SDOF method to estimate incipient collapse 

overpressure of structural elements. 

calculates in incremental time steps the net loading on a structural element. 
It compares the net loading on the element to the incipient collapse 
overpressure in order to determine whether the element will fail. Although the 
individual analysis (e.g., structural analysis of walls and debris translation) 

methods have been compared with existing data there does not appear to have been 

any comparison between the code and experimental results for an entire 
structural system. 
This code also predicts debris distribution. 

As with the B U C O B  code the program 

, 

(Results from the Mill Race Event could perhaps be used.) 

n 
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Multiple-building Studies 

Most of the research in the structural area has concentrated on isolated 

structural elements or single buildings subjected to a single weapon. At some 
point the single building information must be related to an actual city 

complex. 
must be accounted for in estimating the dynamic response or collapse of a 

structure in a city complex. 

It appears that shielding is the most important phenomenon which 

Recent tests by Coulter [C32] investigated the extent to which adjacent 

structures altered the blast loading on a particular structure. The HE tests 
were for various complex configurations with pressure-time histories measured 
on the "model" structure. 
Coulter's conclusions include: 

Figure 8 shows one of the test configurations. 

e The front wall model loading was less when shielded in the complexes 
than when unshielded; 

e The rear wall of the model was loaded additionally with reflections 
from the back row of shields; 

e Whether the model had openings caused only minor changes in the 

exterior loading. 
A s  a result of the first 2 items, there is a decrease in the net translational 

load on the shielded structure. 

complex reduced the maximum front face overpressure from 60 kPa (8.7 psi) in 
the unshielded case, to 40 kPa (5.8 psi) in the shielded case. The rear wall, 

on the other hand, exhibited an increase from about 25 kPa (3.6 psi) to 
approximately 35 kPa (5.1 psi). Notice that the structures in the complex are 
of uniform height. If the surrounding structures had been taller than the 
"model" building, the effects of the shielding would undoubtedly have been 
larger. 
shelters. 

The presence of the adjacent structure 

This possibility could be important when considering key worker 

Debris Estimation 

Both empirical and analytical methods have been applied to estimate the 
Generally the empirical methods have been debris caused by a nuclear weapon. 

applied to the problem of estimating the debris produced in a large area, such 

as an entire city, subjected to a nuclear blast. The analytical methods, on 
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the other hand, have been applied to debris production from individual 

elements and, to a limited extent, to the debris production and distribution 

from a given building. 
63 

Empirical debris estimation procedures have relied on the existing data 

base from the atomic bomb attacks on Hiroshima and Nagasaki [DO21 and from 

nuclear tests in Nevada and the Pacific. The results of the data reduction 

have been used to produce debris estimation methods. 

(URS) [E03, E04, R201 has produced debris estimation charts which give the 

debris production (percentage of building materials) vs incident overpressure 
for a given yield weapon. 
buildings for a 20 kt weapon. For a larger yield weapon, the increased flow 
duration would shift the curves to the left. These curves can be used to 

estimate the debris production in a given area. An assumption about the 

distribution of the debris is then made. 

distribution was assumed.) 
debris depth estimation for various constitutive areas of the city (see Figure 
10). 

estimation. 
from the existing data base with regard to overall debris production. 

United Research Services 

Figure 9 shows the results for various types of 

(In the studies reviewed, a uniform 

The result of the application of this method is a 

The curves produced in this data reduction are useful for gross debris 

It appears that as much information as possible has been gleaned 

A number of studies performed by URS and Scientific Services, Inc. ( S S I )  

[ L 5 1 ,  W39] were aimed, in part, at gaining test data and analytically modeling 

debris production and distribution for walls. These studies included a number 

of shock tunnel tests of various types of walls (e.g. concrete block, brick, 

reinforced concrete, etc.). 
The tests provided information on the behavior of walls near failure and 

included phenomena such as arching. 
on debris production which allowed comparison with simple analytic debris 

estimation procedures [ L 5 1 ,  W391. Comparison of wall displacements from 
motion pictures of the tests and predictions of wall displacements made from 

simple analytical analyses show a surprisingly good correlation for certain 

wall types. 

quantity and distribution for various wall types. 

The test data also provided information 

References L51 and W39 contain photographic data on debris 

Work by Longinow et al. [L46, L501 appears to be the only analytical 

effort to estimate debris production and final distribution for an entire 
building. 

the distribution of blast debris which consists of a loading and response 

Longinow has included in a computer program a method for predicting 

@ 
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analysis for individual structural components and a debris and trajectory 
analysis. 

The program first determines the pressure-time histories acting on the 

external portions of the building. 
pressures and flow velocities in the rooms to determine the time-dependent net 

loading on the individual components. 
component is then carried out. This analysis determines the incipient 

collapse overpressure, time of collapse, and average velocities at collapse 
for exterior walls, interior walls and slabs over basements. The failure 

pattern of the wall, number of pieces, and sizes are estimated based on 
full-scale experimental results. The debris transport is then performed using 

a deterministic, free-flight model. The transport analysis, given the debris 
size, weight, geometry, and the initial flight characteristics of the debris 

from the response analysis, predicts the final distribution of debris 
particles. 
and a sample application are given in [LSO]. 

Then it calculates the average fill 

The transient analysis of each 

(See Figure 11.) A detailed account of the trajectory analysis 

Observations 

The existing tools for structural analysis are based on the SDOF 
These methods essentially predict the response of the individual methodology. 

structural elements (walls) which are assumed to be rigidly supported, i.e., 
attached to a rigid frame. While this method may be acceptable for relatively 
simple frame structures, it is not clear that the SDOF method could accurately 

predict or even be applied to more complicated structures such as tall 
buildings, for which overturning may be important, or to shear wall buildings 

which have become more prevalent in recent years. 

possible addition to BRACOB would allow it to handle multi-level buildings by 
connecting SDOF components at nodes.) 

(According to Rempel a 

Despite the poor results of some of the finite element method analyses 
(See Beck [B12]), this method is very powerful and should not be dismissed. 

Although the existing linear-finite element codes have limited application to 

the blast problems, some of the newly developed structural analysis codes 

which account for large deformations and nonlinear stress-strain relationships 

may be applicable. 
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An effort should be made to generate appropriate documentation on 
existing computer programs. There is currently no manual for the BRACOB code 

nor for the IITRI codes. Preparation of a manual, a user-oriented source 
code, and a listing of assumptions and limitations of the programs is 

L 

necessary for wider use of these codes. 

Conclusions 

Information is lacking in the following areas: 

Methods for analysis of dynamic response of entire buildings. 
Experimental data on dynamic response or collapse of entire 

buildings. 
buildings in large HE shots might be investigated.) 

Empirical data on debris formation and distribution, especially from 
individual structural elements and single buildings, including 

typical residential structures. 
Documentation on existing structural response codes. 

(The practicality of testing scale models of large 

n 
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F I R E  SPREAD 

drs Any development of fire beyond a sustained ignition may be broadly termed 
fire spread." The scale can range from an incipient fire on a single fuel 11 

element to a firestorm consuming thousands of buildings. 

Fire spread on a small scale has long been a subject of interest to the 
fire community. 

solely to civil defense and >military planners. 
exception. Forest fires occur frequently on a large scale. 

the Forest Service has resulted in much empirical data and even some 

predictive capability [ClO, R16, A07, All, S791. The nuclear weapon effects 

on forests were discussed in a handbook by Kerr et al. 

of forest and wildland fires have two advantages over their urban counterparts. 

One is the much larger data base of large-scale fires. The other is a better 
defined and characterized fuel bed. 

Fire spread on a larger scale has been of interest almost 
Forest fires are a significant 

Years of study by 

[K33]. The predictors 

Another exception to this demarcation based on size has been the problem 
Blast effects on incipient fires caused by the of blast effects on fires. 

thermal radiation pulse first became of interest during atmospheric nuclear 

tests in the early 1950s. This led to laboratory investigations on forest 

fuels [Dol]. Interest revived in the late 1960s, but for blast effects on 

fires in an urban environment [M29]. 
During the 1970s several efforts were made to get more data, both in the 

laboratory [ B O L ,  M36, G15] and in an HE shot [W50]. Important work relevant 
to civil defense was that of Goodale [G15]. Various types of rooms were 
modeled in a shock tunnel. Extinguishment of fire was found f o r  all but 

smoldering fuels for overpressures above 2 psi. 
others under different conditions have produced conflicting results, however 

[W491. 

still underway. 

Subsequent experiments by 

Laboratory experiments and theoretical efforts to explain them are 

Blast extinguishment is a complex problem. It depends not only on the 

type of fuel, but on perturbations to the shock wave. There are questions 
whether laboratory experiments in shock tubes adequately model the field 

environment. Test beds, for example, have usually been anchored for 
observational convenience. 
pressure rise after the shock, the duration of the positive pulse, and the 

Questions remain regarding the importance of the 

effects of the artificial ignition methods. Unfortunately, the field tests 
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have been few and generally not particularly illuminating. 

suggested by Napadensky of IITRI and Alvares of LLNL that it might be useful 

to study the methods that have been developed empirically for extinguishment 
of oil field fires. The techniques involve use of a shock wave to blow off 

the flames and cooling of the fuel to prevent re-establishment. 

It has been 

The possibility of fire enhancement by blast has been mentioned, but does 
The effects of blast on established fires i n  not appear to have been studied. 

structures or debris fields is obviously important in some multiple-burst 

scenarios, but no relevant work has been found. 
The next phase in fire spread, assuming the fire has survived the blast 

wave, is the spread from thin to thick fuels and possible total room 
involvement (flashover). 

received considerable attention by academic and fire protection researchers 
[T281. The current knowledge has not, however, been translated into a form 

useful for the modeling of large-scale urban fire response. 

This problem is of major importance and thus has 

Fire spread from a flashed-over room to other rooms in the structure has 

also received a fair amount of attention from the larger community of fire 
researchers [E22]. Here again the information has not been put into suitable 

form for predictive modeling purposes for civil defense. A common assumption, 

for example, has been that if even one room flashes over, then the entire 
building will be destroyed. 

algorithm based on the Gage-Babcock block fire hazard rating system IC181 to 
estimate the fire susceptibility of structures. Some consideration has been 
given to the effect on the burn characteristics caused by ignition at 

different elevations of high-rise structures [T081. 

The SSI model [C40 ]  used a more sophisticated 

The effects of light-to-moderate blast damage on the burn characteristics 

of buildings have been investigated in a few experimental burns [Vll, W171. 
The amount of data is insufficient for modeling purposes. 

Fire spread between buildings can be by radiation, convection, 
conduction, or by firebrands. Disagreement persists about the relative 

importance of the mechanisms, although radiation is generally considered 
dominant between adjacent buildings. Radiative heat transfer is effective for 

distances of about one building height [R09]. 
this by bending the flames and transporting firebrands. On a larger scale, 

convective heat transfer and firebrands become increasingly important. 

Wind can promote or inhibit 
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Renner et al. [R09] listed the fire vulnerability parameters in declining 
order of importance as: fuel parameters (composition, density, size, 

continuity, thickness, moisture content, age, ignitability, burning time, heat 
release, translatability) ; target parameters [fuel load (on a volume or area 

basis)], density of buildings (number and size of openings, number and size of 
enclosures), weather parameters (wind velocity, humidity, air temperature, 

precipitation, insolation) , topographic parameters (slope, aspect , elevation) , 
and other parameters (number and relative location of fires, shape, etc.). 

0 

Waterman [W17] provided evidence of enhanced burning and spread between 
structures as a result of nearby structures. The causes included convective 

heating, radiant reinforcement, and increased air flow. Some enhancement of 

fire burn rates was observed also by Wiersma and Martin [W47]. 

enhancement is clearly dependent on the separation distance, window areas, 
relative heights, etc. 

The 

The rate of spread in urban areas has been generally observed to increase 

linearly with wind speed, except for spreading against the wind. 
content of the fuel is not a factor for contiguous spread, but it does affect 

spread by firebrands [R09], because brands are primarily a hazard to roofs and 
other exterior fuels. 
fire spread rates and compiled those for which there was sufficient 
information. 

die o u t  in the absence of fire fighting. 

Moisture 

Chandler et al. [ClO] analyzed available data on urban 

They gave conditions under which fire would not spread or would 

The lack of data from fire experience has made assessment of the role of 
firebrands in urban fire spread difficult. In peacetime, firebrands are 
usually suppressed, while inadequate data is available for war fires. 

Alger et al. [A141 observed numerous instances of firespread caused by 
ignition and formation of firebrands from shake roofs. Their interest was in 
studying the types and effectiveness of self-help firefighting rather than in 
studying firebrands per se. 

several studies to fill in the large gaps in knowledge [W07, V12, W081. They 
concluded that glowing firebrands over 1 in. in size, such as produced by 
1 in. sheathing, were a serious threat, especially to interior fuels exposed 

by blast damage to windows and roofs, and to weathered shingles. Shingled 
roofs produce copious amounts of small firebrands, but these do not pose a 

large threat. 

During the late 19609, Waterman and others did 

Roofs that remain intact longer produce smaller brands and are 
therefore less of a spread hazard. Previously blast-damaged structures 
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produce larger brands, if some roof remains, because of higher rates of  

burning, and blast damage greatly increases susceptibility to ignition by 
brands. The transport and ultimate distribution of firebrands, especially in 
mass fires, is not known. 

Firespread across debris fields is difficult to quantify because of the 
many variables. 
conditions are important and largely unknown parameters. 

work [W50, W51] has been done, but more is certainly needed before this can be 
considered sufficiently understood. 

Fuel type, density, size and distribution, and weather 

Some experimental 

The modeling of fire spread [ClO, P15, T01, T10, M51, A 3 0 ,  A 3 1 1  in urban 
areas has ranged from deterministic to stochastic. 
stochasticism is always a factor in modeling the target areas as well. Phung 

and Willoughby [P15] used fire data to develop stochastic and deterministic 
models and to identify missing information. 

long-range rural spotting (spread by firebrands), effects of wind and humidity 
on spread rates in urban fuel, burn times for rural and urban fuels, and 

spread probabilities in urban fuels for various weather conditions. 

Some degree of 

They called for more data on 

The IITRI model [TOl, TlO] represented urban areas by somewhat idealized 
tracts bounded by firebreaks. 

brands; spread between tracts was possible only by brands. Miercort [M51] 

simplified the IITRI code by replacing detailed calculations with fitted 

curves. 

Spread within tracts was by radiation or 

Weisbecker and Lee [WZO] compared three fire spread models developed for 
civil defense purposes by Takata and Salzberg (IITRI), Martin et al. (URS), 
and Crowley et al. (Systems Sciences, Inc.). They found the representation of 

urban areas to be a critical part of the problem since it determines the 
accuracy of the results and the amount of data and effort required to run the 

code. 
needed to be evaluated more carefully before inclusion in the codes. 

They also felt that the modeling of the various physical processes 

A strictly stochastic model of fire spread which incorporates a very 
large amount of fire data is that of Aoki [ A 3 0 ,  A311. By analyzing Japanese 

fire data he has fit parabolic isoprobability curves for nine pairs of three 
common building types. This allows calculation of the probability of spread 

from one type of structure to another when the separation and building heights 
are known. 

work of Horiuchi [H25], who developed algorithms for firespread as a function 
Aoki's work was built upon a hypothesis of Hamada. So did the 
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of wind speed and direction. The applicability of these results to American 
u c i t i e s  is not clear. Whether or not sufficient data exists on American cities 

to develop similar algorithms is not known. 

The next phase towards a mass fire is the merging of fires from 

individual structures. 

burning rate of adjacent structures. 
effects of multiple fires has been done in laboratory as well as in full-scale 

fires [H31, W47, W171. The small amount of work on coalescence up to 1966 was 
reviewed by Martin et al. [M20]. 

This changes the ground level winds and increases the 
A small amount of work on interactive 

How large fires can merge to form mass fires (conflagrations or 

firestorms) has not been studied in much detail. Considerable work has been 
done on firestorms, but the emphasis has been on estimating conditions under 

which they occur [RlZ, T35, L351 or how established firestorms might affect 
atmospheric conditions, not on the details of their evolution from a multitude 

of smaller fires. One exception was the work of Lomnasson et al. [L35] in 
which it was considered how mass fires might be studied by use of scale 
models. Parker [PO61 also considered this problem. It is well-established 

that complete modeling is impossible; only selected aspects can be 

incorporated in a scale model. 
Flambeau series [C36, P03, S853. It is believed by some that firestorm 

conditions were achieved during part of the largest Flambeau fire. Not all of 

the data from the Flambeau series has been fully analyzed, and future tests of 

such magnitude are unlikely. 

Mass fires were studied experimentally in the 

Morton et al. [M70, S721 have generally been credited with having 
successfully modeled the convective plume of a firestorm. Their results do 
not apply, however, near the ground--the region of most interest to civil 

defense. 
More recent theoretical work has attempted to determine the effects on 

the atmosphere as well as conditions within an established firestorm [S671. 

Carrier et al. [GO81 have continued to emphasize the need to explain the 
vorticity of firestorms that meteorologists have generally considered a key 
feature. 

In contrast with firestorms, mass conflagrations (moving front, 
large-scale fires) have received very little attention outside of the forest 

fire community. The general assumption seems to be that, given the conditions 

ypical of firestorms (e.g., high-fuel density, large number of simultaneous 
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ignitions, etc.), a mass conflagration can develop if the ambient windspeed is 
high enough. 

ability, similar to firestorms, of modifying atmospheric conditions, which in 
turn affects the fire behavior. In the case of a conflagration this can 

result in spread rates exceeding those possible for ordinary fires. 
the potential for enormous destruction of life and property, mass 
conflagrations have generally been dismissed as little more than big fires 
[R09]. 

The distinguishing feature of a mass conflagration is its 

Despite 

Conclusions 

Information is lacking in the following areas: 

0 

0 Conditions under which established structural or debris fires or 

Conditions under which blast extinguishes or promotes incipient fires. 

wildland fires are extinguished or promoted by blast. 
Effects of light-to-moderate or severe blast damage on burn 
characteristics of structures. 

Synergistic effects of adjacent burning structures on their burn 
characteristics. 

Convective ignition criteria for a variety of materials. 
Firebrand production, transport, and ignition threat. 

Fire spread rates across various types of debris fields. 
Effects of wind, humidity, and precipitation on fire spread rates 

0 

0 

0 

0 

e 

across various types of debris fields. 
0 Conditions for existence of mass fires. 
0 Conditions within or near a mass fire, especially a conflagration. 

A 



CONCLUSIONS - 

On the basis of the literature survey on blast and fire effects on urban 

areas following nuclear attack, we conclude that there has been uneven 
development of our understanding of the various physical phenomena involved. 

Without implying any relative importance by their order, we list below 
those areas where knowledge appears to be the most deficient. 

8 

0 

0 

0 

a 

0 

0 

0 

0 

4) 

0 

8 

0 

Ignition criteria for newer materials, and for all materials under 
typical use conditions. 
Effects of complex geometry or mixed fuel on ignition criteria. 
Enclosure effects on flashover. 

Conditions under which blast promotes incipient fires. 
Effects of blast damage on the burn characteristics of structures. 
Debris production and distribution from individual building elements 

and buildings, especially residential. 
Fire spread rates between relatively intact structures for many 

simultaneous ignitions and through debris fields for various wind and 

weather conditions. 
Conditions for the existence of mass fires, and conditions within and 

near them. 
Methodology for thermal radiation propagation through incompletely 

specified atmospheres. 
Methodology for efficient representation of an urban area in a 

realistic fashion. 
Methodology for calculating shadowing and shielding effects of a 

specified urban area. 

Methodology for calculating dynamic response and collapse of entire 

buildings. 
Multiple-burst effects on thermal radiation and blast-wave loading of 
targets; effects of blast on established fires; and structural 

response of structures previously damaged by blast or fire. 
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APPENDIX A 

Relative state of knowledge 

The results of the literature survey are summarized in the outline on the 

following pages. 

Almost none of the subjects are understood in the breadth or depth sought in 

more academic areas. 

Bear in mind thabthe rankings are subjective and relative. 
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Relative State of Knowledge 
2 1 0 

Attack scenario 

1. Target Identification for Various X 
Strategic choices 

2. Yields, HOB, CEP for Individual Targets X 

3. Timing of Bursts for Individual Targets X 

4.  Weapon Output Characteristics X 

11. Transmission and Shadowing of Thermal Radiation 

1. Transmission of Thermal Pulse Through X 
a Clear Atmosphere 

2. Effects of Clouds, Precipitation 
(Deterministic) 

3. Methodology to Account for Realistic 
Atmospheric Conditions 

4. Shadowing Effects of Terrain, 
Structures (Deterministic) 

5 .  Methodology to Account for Shadowing 
Effects in a Realistic Fashion 

111. Blast Propagation 

1. Blast-Wave Propagation in Free Field, X 
Clear, Still Atmosphere 

2. Effects of Other Atmospheric Conditions 

3. Shielding Effects of Specified Terrain X 

4.  Shielding Effects of Specified Structures 

5. Methodology for Shielding Effects in an 
Urban Environment 

X 

X 

X 

X 

X 

X 

X 
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IV. Radiative Ignition Criteria 

Relative State of Knowledge 
2 1 0 

1. Identification of Relevant Parameters X 
for Sustained and Transient Ignition by 
Thermal Radiation 

2. Understanding of the Effects of Wind, 
Sample Orientation 

3 .  Geometrically-Complex, Mixed Fuel, and 
Enclosure Effects 

4. Criteria for a Variety of Common 
Materials with Clean Surfaces 

5. Same for Materials Which Have Come Into 
Common Use in the Past 20 Years 

6 .  Criteria for a Variety of Common 
Materials with Surfaces Representative 
of Use Conditions (Dirty, Weathered, 
Condensat ion) 

v. Blast Effects on Fires 

1. Understanding of Conditions for Which 
Blast Extinguishes Incipient Fires 

2. Understanding of Conditions for Which 
Blast Promotes Incipient Fires 

3 .  Effects of Blast on an Established 
Structural or Debris Fire 

4. Effects of Blast on an Established 
Wildland Fire 

VI. Secondary Fire Ignition 

1. Probabilities of Secondary Fire 
Ignition as a Function of Blast 
Loading, Building Type and Use, for 
Non-Residential Buildings 

2. Same, But for Residential Buildings 

3. Effects on Burn Characteristics of 
Structures for Secondary vs 
Primary Ignition 
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VII. Fire Spread Within Relatively-Intact Structures 

1. Time from Ignition to Total Room 
Involvement for Various Types of 
Buildings (Classical Flashover) 

2. Time from Single-Room Involvement to 
Total-Building Involvement for Various 
Types of Buildings 

3 .  Burn Characteristics for Single- 
Building Fires, €or Various Types 
of Buildings 

4 .  Effects of Light-to-Moderate Blast 
Damage (Missing Windows, Roofs) on 
Burn Characteristics 

VIII. Fire Spread Between Relatively Intact Structures 

1. Understanding of How Fire Spreads From 
One Structure to Others, Including 
Effects of Wind, Humidity, and 
Precipitation, for Various Combinations 
of Adjacent Structural Types 

2. Synergistic Effects of Adjacent Burning 
Structures on Their Burn Characteristics 

3 .  Firebrand Production, Transport, and 
Ignition Threat 

IX. Convective Ignition Criteria 

1. Identification of Relevant Parameters for 
Sustained and Transient Ignition by 
Convective Heating, Including Effects 
of Wind 

2. Data for a Variety of Common Materials 

3 .  Flammability Data for Materials Exposed 
to Mixed Convective and Radiative Sources 

Relative State of Knowledge 
2 1 0 

X 

X 

X 

X 

it 

X 

X 

X 

X 

X 
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X. Single-Building Response to Blast 

1. 

2. 

3. 

4. 

5. 

6 .  

External Loading History of Isolated 
Structure 

Internal Room Filling 
Single Room, Multiple Rooms, 
Complex Geometry 

Methodology for Modeling Dynamic 
Response and Collapse of Individual 
Structural Elements (e.g., Walls, 
Floors) 

Experimental Data for Collapse of 
Structural Elements 

Dynamic Response and Collapse Models 
of Various Types of Structures 

Experimental Data for Collapse of Various 
Types of Structures 

Relative State of Knowledge 
2 1 0 

XI. Multiple-Building and Multiple-Burst Response 

1. Effects of Shielding on Blast Loading of a 
Specified Structure in an Urban Area 

2. Experimental Data on Blast-Wave Shielding 

3 .  Effects of Multiple Bursts on Dynamic 
Response of Structures 

4. Effects of Fire on Structural Response 

XII. Debris Formation and Transport 

1. 

2. 

3 .  

4. 

Understanding of Debris Formation 
Mechanisms 

Modeling of Debris Production for 
Various Types of Buildings as a 
Function of Blast Loading 

Ultimate Debris Distribution from 
Various Types of Buildings as a 
Function of Blast Loading 

Experimental Data on Debris Trans- 
lation and Distribution for Various 
Building Types 

44 

X 

X 

X 

X 

X 

X 

X 

x 

X 

X 

X 

X 

X 

X 

Q X 



Relative State of Knowledge 
2 1 0 

XIII. Fire Spread Through Debris and Collapsed 
Structures 

1. Effects of Severe Blast Loading on 
Subsequent Burn Characteristics of 
Various Types of Structures 

2. Fire Spread Rates Across Various 
Types of Debris Fields 

3. Effects of Wind, Humidity, and 
Precipitation on Fire Spread 
Rates Across Debris Fields 

XIV. Mass Fires 

1. Understanding of Conditions Under which 
Individual Fires Merge, and the Effects 
of Merging on Burn Characteristics of 
Structures 

2. Conditions for Existence of Firestorms 

3. Conditions for Existence of Mass 
Conflagrations 

4.  Physical Conditions Within a Firestorm 

5. Physical Conditions Within and Near 
a Conflagration 

X 

X 

X 

X 

XV. Fire Spread Through Wildland Areas 

1. Understanding of Fire Spread in Wildland X 
Areas 

2. Rates of Fire Spread Through Various X 
Fue 1 s 

3 .  Effects of Wind, Humidity, and X 
Precipitation on Rates of Fire Spread 
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APPENDIX B 

This bibliography is arranged alphabetically by first author. The order 

for multiple entries by an author is chronological. 

or PB number is given to facilitate ordering from the Defense Technical 
Information Center (DTIC) in Alexandria, Virginia or the National Technical 

Information Service (NTIS) in Springfield, Virginia, respectively. 

Wherever possible an AD 

If an "L" follows the document's AD number, its distribution has been 

limited by the research sponsor even though the document may be unclassified. 
(Any classification is noted.) 

We do not claim that this is a complete bibliography, even for the past 
In many cases, particularly for fire, it is difficult to draw the 25 years. 

line between relevant and interesting. It is hoped that the titles are 
sufficient to indicate whether obtaining the document is worthwhile. We have 

not made heroic efforts to obtain obscure documents or journals since we Eelt 
it would be  more u s e f u l  to list documents that are readily available. We 
probably missed some gems, but we hope that we have avoided raising 

unrealizable hopes as well. 
There are a few reports that have not been entered into the DTIC or NTIS 

systems. 
these organizations are identified below: 

In these cases a corporate number has been given. For reference 

ARBL--Army Ballistic Research Laboratory; Aberdeen, MD 

BRI--Building Research Institute, Japan 

DNA--Defense Nuclear Agency; Washington, DC 

NRDL--Naval Radiological Defense Laboratory; formerly of San Francisco, CA 
ORNL--Oak Ridge National Laboratory; Oak Ridge, TN 

PSR--Pacific-Sierre Research; Santa Monica, CA 

SAI--Scientific Applications, Inc.; La Jolla, CA 

SKI--SRI International; Menlo Park, CA 

URS--United Research Services; formerly of Burlingame and San Mateo, CA 

WT--Atomic Energy Commission report series 
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